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ABSTRACT

Assimilation of satellite radiance data in limited-area, rapidly updating weather model/assimilation

systems poses unique challenges compared to those for global model systems. Principal among these is the

severe data restriction posed by the short data cutoff time. Also, the limited extent of the model domain

reduces the spatial extent of satellite data coverage and the lower model top of regional models reduces the

spectral usage of radiance data especially for infrared data. These three factors impact the quality of

the feedback to the bias correction procedures, making the procedures potentially less effective. Within

the National Oceanic and Atmospheric Administration (NOAA) Rapid Refresh (RAP) hourly updating

prediction system, satellite radiance data are assimilated using the standard procedures within the Grid-

point Statistical Interpolation (GSI) analysis package. Experiments for optimizing the operational

implementation of radiance data into RAP and for improving benefits of radiance data have been per-

formed. The radiance data impact for short-range forecasts has been documented to be consistent and

statistically significantly positive in systematic RAP retrospective runs using real-time datasets. The ra-

diance data impact has also been compared with conventional observation datasets within RAP. The

configuration for RAP satellite radiance assimilation evaluated here is that implemented at the National

Centers for Environmental Prediction (NCEP) in August 2016.

1. Introduction

The Rapid Refresh (RAP; Benjamin et al. 2016,

hereafter B16) is a National Oceanic and Atmospheric

Administration (NOAA) operational mesoscale hourly

updated assimilation/predictionmodel run at theNational

Centers for Environmental Prediction (NCEP). Because

of the increased domain coverage of RAP (Fig. 1 in B16)

compared with its predecessor, the Rapid Update Cycle

(RUC; Benjamin et al. 2004a), satellite radiance data now

play a role in hourly model assimilation and forecast skill.

The incorporation of satellite radiance data into RAP is

one of the noticeable differences between the RAP

and RUC. Our related study (Lin et al. 2017, manu-

script submitted to Wea. Forecasting) shows that the

Atmospheric Infrared Sounder (AIRS; Aumann et al.

2003) data have a small positive impact within a 3-h

cycled older RAP version using full radiance coverage

datasets (no limits on data usage because of real-time

data cutoff issues) for research purposes. Here, we look

at the impact of real-time satellite radiance data for

short-range forecasts (0–18 h) and how to maximize the

data impact within the real-time high-frequency updated

regional models.

Satellite radiance data have been directly assimilated

effectively through the use of radiative transfer models

and variational assimilation schemes in virtually all op-

erational numerical weather prediction (NWP) centers

(Andersson et al. 1994; Derber and Wu 1998; McNally

et al. 2000, McNally et al. 2006) and have become the

most important observation datasets for global models.

Procedures for the direct assimilation of radiance data

into global models are well established, and the signifi-

cant positive impact of radiance data within global

models has beenwell demonstrated (e.g., Jung et al. 2008;

McNally 2012; Lord et al. 2016; Boukabara et al. 2016).
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The direct assimilation of radiance data into regional

models, however, still remains a challenge as a result of

nonuniform and limited data coverage, radiance bias

correction, and relatively lower model tops compared

with global models. Some NWP centers are currently

exploring the maximum impact of radiance data into

regional models by overcoming the difficulties inherent

in the regional radiance assimilation (e.g., Kazumori

2014). By reducing the amount of data thinning, ex-

trapolating the atmospheric profiles from mesoscale

model top to the radiative transfer model top, and using

the bias correction coefficients estimated from global

models, Kazumori (2014) showed improvements in

regional-model forecasts of troposphere geopotential

height and precipitation, using mostly microwave and

imager data.

Maximizing data coverage becomes a more difficult

challenge for high-frequency updating regional systems.

The very short observation cutoff time (;35min) and

the long data latency, especially for polar-orbiter satel-

lites, pose significant challenges for maximizing real-

time data coverage. The reduction of data latency is

crucial for rapidly updating model systems. Sparse data

coverage associated with limited domain size and a

lower model top with fewer levels in the stratosphere

compared with most global models further reduces the

effectiveness of the regional radiance bias correction.

The lower model top and fewer atmospheric layers can

result in radiance data that have less utility. Noting

these challenges, we evaluate the impact from satellite

radiance data on the real-time operational RAP and

develop a design to improve the benefits from these

data. Here, we developed a series of radiance updates

and tested their effectiveness for better radiance as-

similation within RAP. These radiance updates in-

cluded using the Regional ATOVS Retransmission

Services [RARS; short latency direct readout; WMO

(2009)] direct-readout data to reduce the real-time

data latency, channel selection to remove the high

peaking channels (also ozone channels) to reduce the

adverse impact from the relatively low model top, and

the usage of enhanced variational bias correction with

cycling developed by NCEP (Zhu et al. 2014) to

obtain a more robust, efficient, and stable radiance

bias-correction procedure. These settings/updates for

improved satellite radiance assimilation with an hourly

model were implemented in RAP version 3 (RAPv3)

at NCEP during August 2016. This study is the first to

give an overall evaluation and impact assessment of

real-time satellite radiance data on short-range fore-

casts within the RAP.

A series of 1-month retrospective experiments has

been performed with and without the real-time

radiance data (also with and without the direct-

readout data) to evaluate the radiance data impact

using RAP version 3. RAPv3 covers a greater pro-

portion of oceanic areas than do RAPv1 and RAPv2

(Fig. 1 in B16), with yet more need for effective sat-

ellite radiance assimilation. Furthermore, because

satellite radiances are a principal new dataset in RAP

compared with the RUC, the impact of radiance data

is also compared with other conventional datasets

(aircraft and radiosonde data) to quantify the relative

magnitude of the impact from the radiance data

within RAP through several 1-month data-denial

retrospective runs. This paper complements the

RAP observation impact experiments for non-

radiance observations described by James and

Benjamin (2017).

The paper is organized as follows: a brief description

of the RAP model system is given in section 2. Section

3 gives the overall radiance updates/settings for RAP

version 3 including the discussion of real-time satellite

radiance coverage and the usage of the RARS direct-

readout data in RAP, the channel selection process

designed to fit RAP’s model top, and the im-

plementation and assessment of the enhanced varia-

tional bias correction with cycling in RAP. Section 4

provides the experiment design, results, and discussion

about the radiance data impact in RAP as well as the

relative radiance data impact comparison with con-

ventional datasets from several 1-month retrospective

runs. Section 5 provides conclusions and outlines our

future work.

2. Rapid Refresh model system

The RAP mesoscale assimilation and forecast system

was developed by the Global Systems Division (GSD)

of the NOAA’s Earth System Research Laboratory

(ESRL) in collaboration with other laboratories and has

run operationally at NCEP since 2012. The RAP con-

figuration as it is being used operationally at NCEP in

2016 is described in B16. The version of the RAP used in

this study employed the code developed at ESRL/GSD

as of mid-2015, a development version toward RAP

version 3 (operationally implemented at NCEP in Au-

gust 2016), which included the advanced GSI hybrid

variational–ensemble Kalman filter (EnKF) data as-

similation system and the full radiance updates for RAP

version 3.

The RAP model utilizes Gridpoint Statistical In-

terpolation (GSI; Wu et al. 2002; Kleist et al. 2009) for

the analysis component and the Advanced Research

version of the Weather Research and Forecasting

Model (WRF-ARW; Skamarock et al. 2008) for the
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forecast component. WRF version 3.6 is used in this

study. Beginning with RAP version 2 (operationally

implemented at NCEP during February 2014), the

advanced GSI hybrid EnKF data assimilation

system was implemented using ensemble information

from the NCEP 80-member global ensemble data

assimilation system.

RAP operates at 13-km horizontal resolution (see

Fig. 1 in B16 for the RAPv3 domain), with 954 3 835

grid points and 50 vertical computational layers, and a

10-hPa model top. In addition to conventional data,

satellite radiance data are also assimilated in the RAP

through the Community Radiative Transfer Model

(CRTM; Han et al. 2006; Weng 2007) built within GSI.

Only clear-sky radiance data are assimilated in the

version of GSI employed for the RAP. Forecasts from

the NCEP Global Forecast System (GFS) are in-

troduced twice daily into RAP through two partial

cycles (0300–0800 and 1500–2000UTC), as described in

B16. In contrast to the full cycles (24 cycles from 0000

to 2300 UTC each day), which have longer (up to 18 h

for NWP guidance) forecasts, each partial cycle has a

1-h forecast for the purpose of advancing the cycle. The

GFS also provides lateral boundary conditions for the

RAP forecasts. Surface fields (e.g., snow cover, soil

moisture) are continuously hourly cycled within the

RAP independent of the GFS.

3. Radiance assimilation for RAP version 3

a. Real-time radiance data coverage

Consistent with the short-range ‘‘situational

awareness’’ niche that RAP and the High Resolution

Rapid Refresh (HRRR; Smith et al. 2008, B16) oc-

cupies within the NCEP suite of models and with its

FIG. 1. AMSU-A channel 3 brightness temperature

(BT) from NOAA-19 at 1200 UTC May 29 2013 with

61.5 h time window for (a) RAP regular feed data file,

(b) RAP RARS data file (operational with RAPv3), and

(c) the ideal condition (no data latency and cut-off issue).
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hourly updated cycling frequency, RAP and HRRR

use a short observation data cutoff time of about

135min after the analysis time. For satellite data, this

short observation cutoff time poses significant chal-

lenges. With the hourly cycling nature of the regional

RAP model, the maximum areal extent of polar-

orbiting satellite data coverage for a given hour is al-

ready limited because of the short data-use window.

For RAP, this window extends back no more than

1.5 h from the model initial time. This already limited

FIG. 2. (a) Daily averaged percent (%) and (b) hourly averaged observation number for

regular feed, RARS feed, and ideal GDAS conditions and (c) hourly averaged observation

percent for regular feed and RARS feed against ideal conditions. Statistics are computed from

NOAA-19AMSU-A channel 3 over the RAP domain over a 1-month period (1–31May 2013).

The time window is 61.5 h.
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areal coverage is further reduced when increased

data latency delays the time of the data availability.

This can lead to a situation where most (or even all) of

the observation data that are available by the obser-

vation cutoff time are too old to be used (observations

are available before the beginning of the data-use

window). This issue significantly limits the utility of

satellite data in high-frequency assimilation systems

such as RAP.

To provide some illustration of this satellite latency

issue for RAP (which also affects HRRR since RAP is

used to initialize HRRR), spot-check evaluations for

some RAP regular real-time satellite data files and the

RARS files for RAPwere completed. TheRARS project

aims to provide real-time satellite data for NWP models

with reduced data latency via locally received direct-

readout reception systems (WMO 2009). Figure 1 shows

the NOAA-19 AMSU-A data coverage at 1200 UTC

FIG. 3. As in Fig. 2 but for the NOAA-18 satellite platform.
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29 May 2013 for the RAP real-time regular feed

(RAPv2 feed) data file, a RARS data file for RAP, and

the ideal conditions [no data latency or data cutoff issues,

data from NCEP’s Global Data Assimilation System

(GDAS)]. As Fig. 1 shows, for this cycle time, just a small

amount of data was available in the data-use window in

the RAP real-time file (Fig. 1a). In contrast, data cov-

erage from the RARS file (Fig. 1b) is better, due to the

lower latency from the direct readout. Figure 1c shows

the coverage for no latency, the best possible condition.

To obtain a more complete picture of the real-time

radiance data availability, we have examined the real-

time RAP radiance data for a 1-month (May 2013)

period. Figures 2 and 3 show the statistical results based

on 1-month datasets for AMSU-A channel 3 from the

NOAA-19 platform and the NOAA-18 platform, re-

spectively. It can be seen that the data from the oper-

ational RAPv2 feed have a daily average of 13% for

NOAA-19 and 6.9% forNOAA-18 availability whereas

the RARS feed provides around 36% availability for

NOAA-19 and 31% for NOAA-18, thus showing that

the RARS feed data can increase the hourly radi-

ance data coverage for RAP. The results are similar

regardless of time of day (Figs. 2b,c and 3b,c). Although

the RARS feed dataset significantly increases the daily

coverage, it is still short of full data usage. As these ex-

amples illustrate, satellite data latency issues significantly

limit the utility of these data for high-frequency data as-

similation systems but access to low-rate data (LRD) via

direct readout is critical for improved data coverage in

FIG. 4. Normalized weighting function of used channels in RAP for (a) AMSU-A onboard NOAA-15, (b) MHS onboard NOAA-18,

(c) HIRS-4 onboard MetOp-A, and (d) GOES sounder (sndrD1) onboard GOES-15. The dashed line indicates the RAP 10-hPa

model top.

TABLE 1. List of AMSU-A, MHS, HIRS-4, and GOES sounder

channels used in the retrospective runs.

Satellite Sensor Channels assimilated

NOAA-15 AMSU-A 1–10 and 15

NOAA-18 AMSU-A 1–8, 10, and 15

MHS 1–5

NOAA-19 AMSU-A 1–7, 9–10, and 15

MHS 1–5

MetOp-A AMSU-A 1–6, 8–10a, and 15

MHS 1–5

HIRS-4 4–8 and 10–15

MetOp-B AMSU-A 1–10 and 15

GOES-15 MHS 1–5

Sounders (sndrD1, sndrD2,

sndrD3, and sndrD4)

3–8 and 10–15

a As of 26 September 2014, channel 8 fromMetOp-A was removed

from operational RAP per an NCEP note indicating channel 8

had gone bad.
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RAP. Accordingly, the RARS feed dataset has been

adopted for use inRAP version 3, partially as an outcome

of this study.

b. Channel selection

As the RAP system has a low model top of 10 hPa,

satellite channels with a peak weighting function

(PWF) above or near the RAP model top are not as-

similated. For a specific channel, if the transmittance

calculated from CRTM from the model top to the top

of atmosphere (TOA) is more than 10% of the total

transmittance contribution, then this channel is re-

moved. Channel selection for RAP [AMSU-A, Mi-

crowave Humidity Sounder (MHS), HIRS-4, and

GOES sounder] has been performed, removing the high-

level and ozone channels. The channels selected for RAP

are listed in Table 1. These channels are currently used in

the operational version of RAP (RAPv3) at NCEP.

Figure 4 shows the weighting functions of the channels

used in RAP for four satellite platforms (AMSU-A on

FIG. 6. As in Fig. 5, but for time series of the mean (cycle averaged) bias correction terms (K).

FIG. 5. Time series of the coefficients of air-mass bias correction predictors (global offset, cloud liquid water,

square of lapse rate, and lapse rate) forNOAA-18AMSU-A channel 6 from the 1-month (1–31 May 2013) control

experiment using RAP.
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NOAA-15, MHS on NOAA-18, HIRS-4 on MetOp-A,

and the GOES sounder onGOES-15). It can be seen that

the channels with peak weighting functions as high as

;50hPa are usable in RAP.

c. Bias correction

Bias correction is needed because satellite radiance

data have biases due to calibration errors, the accuracy of

the radiative transfer models, and systematic errors in

the NWP short-term forecasts. GSI uses a variant of the

variational radiance bias-correction scheme (Derber and

Wu 1998; Dee 2005; Zhu et al. 2014). RAP version 3 uses

the GSI enhanced radiance bias-correction (BC) scheme

(Zhu et al. 2014) with the one-step airmass and scan-angle

components both updated inside GSI. The airmass com-

ponent is a linear combination of a set of predictors. There

are four predictors in the enhanced radiance bias correc-

tion: global offset, cloud liquid water (for microwave

data), temperature lapse rate, and the square of the

temperature lapse rate. The scan-angle bias correction

term is expressed as a third- or fourth-order polynomial

of the scan angle. All airmass and scan-angle bias co-

efficients are updated together with analysis control

variables inside the GSI minimization process (Zhu

et al. 2014). The airmass and angle bias coefficients are

cycled hourly inside RAP. To further illustrate the time

evolution of the airmass bias correction, Figs. 5 and 6

show the 1-month time evolution of the airmass bias

coefficients (Fig. 5) and the cycle-averaged airmass bias

correction terms (Fig. 6) for NOAA-18 AMSU-A

channel 6 from a RAP retrospective experiment

(1–31 May 2013) that assimilates all the radiance data

considered in this paper (summarized in Table 1). This

experiment, which also includes all the conventional

observations, will serve as the control experiment and

will be further described in section 4a. Figure 7 shows

FIG. 7. Histogram of BTO2B values before (blue) and after BC (red) for (a) AMSU-A channel 5 onNOAA-15,

(b) MHS channel 5 onNOAA-18, (c) HIRS-4 channel 6 onMetOp-A, and (d) GOES sounder (sndrD1) channel 11

on GOES-15. Statistics obtained from the 1-month control run (including all observations). The dashed blue line

indicates the mean value for the blue line, and the dashed red line indicates the mean value for the red line. The

thick dashed black line is the zero line.
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the histograms of observationminus background (O2B)

values after (red) and before (blue) BC was applied for

several representative channels from the AMSU-A,

MHS, HIRS-4, andGOES-15 sounder datasets. Statistics

are based on the same 1-month control run. After BC, the

mean values ofO2B are closer to zero for these channels

compared with those before BC. This demonstrates that

the BC procedure is functioning properly.

4. Experiment design and results

a. Retrospective experiments

To evaluate the impact of real-time radiance data

within RAP, 5-month-long (1–31 May 2013) retrospec-

tive RAP hourly runs were completed: a control run

(CNTL) and four data-denial runs. These runs were

started at 0300 UTC 1 May 2013. An 18-h forecast is

produced at each full cycle. The control run assimilated

all operational real-time conventional and satellite ra-

diance datasets as used in RAP version 3. All available

conventional data, which include radiosondes, NOAA

profilers, velocity–azimuth displays (VADs) winds,

aviation routine weather reports (METARs; surface),

buoys/ships, mesonets, global positioning system (GPS)

derived precipitable water results, and satellite-derived

atmospheric motion vector (AMV) winds, were as-

similated in the CNTL run (see Table 2). Satellite ra-

diance data included in the CNTL run were data from

the AMSU-A, MHS, and HIRS-4 (low spectral infrared

data). RARS data are used for radiance transmission

for these RAP experiments. In this study, the RARS

data are applicable to AMSU-A and MHS data on the

NOAA-18, NOAA-19, MetOp-A, and MetOp-B satel-

lite planforms. A complete list of data assimilated in

the CNTL run is given in Table 2. Four data-denial

experiments were performed, including RARS, all-

radiance, aircraft, and radiosonde denial. Table 3 shows

the list of these five retrospective runs with observation

types withheld. The RARS data-denial experiment (re-

moving the RARS direct-readout radiance data only, all

other data retained as with CNTL) is used to evaluate the

added impact from the real-time RARS data as well as to

preevaluate the benefits from future direct-readout data.

The all-radiance data-denial run (removal of all radiance

data includingRARSdata) is used to evaluate the overall

impact from the radiance data within RAP. This will also

show the impact from radiance data within the opera-

tional RAP (RAPv3). To show the relative impact of

radiance data to other observations, two more data-

denial runs were conducted: one for aircraft (including

temperature, wind, and relative humidity) and one for

radiosondes (including temperature, relative humidity,

wind, and surface pressure). All four of the data-denial

experiments will be compared with the CNTL results

through the radiosonde verification for temperature,

relative humidity, and wind.

A thinning mesh of 60 km was used for all radiance

data in this study as the scale at which radiance ob-

servation errors are assumed to be uncorrelated. The

observation errors used for all radiance channels as-

similated in this study were obtained from the

NCEP GDAS.

b. Results

We evaluated the data impact through the com-

parison of all four data-denial experiments with the

CNTL run as verified against the available rawinsonde

data in the RAP domain over a 1-month period. The

rawinsonde verification procedure used in this study

follows Benjamin et al. (2004a), Benjamin et al.

(2010), and Moninger et al. (2010). In these data-

denial experiments (Table 3), we compare forecast

results of the CNTL run when all data are used against

TABLE 3. Observation impact experiments in this study. Those observational variables denied in RAP are shown for each experiment:

radiance, temperature T, horizontal wind V, relative humidity (RH), and surface pressure (Ps).

Expt Observation type and variable denied

CNTL: all observations used

No RARS radiance Radiance BT (AMSU-A, MHS) from RARS direct readout data

No radiance Radiance BT (AMSU-A, MHS, HIRS-4, GOES sounder), including RARS data

No aircraft Aircraft V, T, RH

No radiosonde Rawinsonde T, V, RH, Ps

TABLE 2. Types of data used in the CNTL experiment.

Observation Platform

Conventional

Upper air Sonde, profiler, and aircraft

Land surface METAR and mesonet

Marine surface Ship and buoys

Radar VAD winds

Satellite

Satellite winds (AMV) GOES

Precipitable water GPS

Microwave radiances AMSU-A and MHS

Infrared radiances HIRS-4 and GOES sounder
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the selective denial of certain data classes as noted in

Table 3. A positive impact of a data source thus indicates

that the CNTL, with that data type present, produced

better forecasts than the experiment inwhich that data type

was not used. The metric for the quantitative impact of a

data source is normalized reduction in root-mean-square

error (RMSE) [i.e., (EXPT 2 CNTL)/CNTL, more de-

tails about the normalized percentage impact can be

found in Benjamin et al. (2004b)], where EXPT is the

RMSE of the experiment in which the given data type is

not used and CNTL is the RMSE of the control experi-

ment in which all data are used.

FIG. 9. As in Fig. 8, but for normalized RMSE reduction

[(EXPT 2 CNTL)/CNTL] (%).

FIG. 8. RMSE reduction (EXPT 2 CNTL) for (top left) temperature (K), (top right) relative humidity (%), and (bottom left) vector

wind magnitude (m s21) from the RARS denial run (blue) and all-radiance denial run (red) 1–18 h forecasts against rawinsonde obser-

vations. Statistics are computed for 1000–100-hPa layer over the RAP domain. The retrospective period is 1–31 May 2013. The error bar

indicates the 61.96 standard error from the mean impact, representing the 95% confidence threshold for significance.
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First, we look at the impact from the RARS data and

from the all-radiance data. Figures 8 and 9 show the

unnormalized and normalized 1–18-h forecast RMSE

reductions (against radiosonde data, 1000–100 hPa av-

eraged) of the RARS data-denial (blue) and all-

radiance data-denial (red) runs compared with the

CNTL run, respectively. We note that since the 6- and

18-h forecasts are initialized at times that have the

longest interval since the introduction of global GFS

information, which occurs at the end of the each partial

cycle (0900 and 2100 UTC; see B16, section 2 for more

details), the strongest data impact should be antici-

pated for these forecasts. It can be seen that radiance

data have a very consistent small positive impact for all

variables (temperature, relative humidity, and wind)

and for all forecast lead times (1–18 h) with confidence

at the 95% level. For temperature, the normalized

impact is from 0.7% to 1.6% (1- and 18-h forecasts have

the biggest impact, nearly 0.01- and 0.025-K RMS error

reductions, respectively); for relative humidity, the

normalized impact is from 0.7% to 1.1% (6- and 18-h

forecasts have the biggest impact, nearly 0.25%and 0.3%

RMS error reductions, respectively); and for wind, the

normalized impact is from 1.0% to 1.6% (6- and 18-h

forecasts have the biggest impact, nearly 0.06 and

0.07m s21 RMS error reductions, respectively). The

real-time RARS data alone also have positive impacts,

with averaged normalized impacts of 0.3%–0.9% for

temperature and 0.2%–0.3% for relative humidity and

wind. Depending on the variables and forecast hours, it

is noted that use of the RARS data contributes about

10%–35% of the data impact from the all-radiance

dataset. It is also expected that other future low-data-

latency direct-readout/broadcast data or/and low-latency

geostationary data could contribute significantly if used

within RAP. Radiance data from geostationary satel-

lites with low data latency will be favorable for hourly

updating model systems.

Figure 10 shows the 6-h forecast RMS profile errors

from the all-radiance data-denial experiment compared

FIG. 10. RMSEs for (top left) temperature (K), (top right) relative humidity (%), and (bottom left) vector wind magnitude (m s21) for

the control run (black) and all-radiance denial run (red) 6-h forecasts against rawinsonde observations over the RAP domain at isobaric

levels every 50 hPa for a 1-month period (May 2013). The difference (all radiance denial run minus control run) is plotted in blue.
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with the control run. It is noted that, for temperature,

the largest positive impact (blue line, RMSE differ-

ence) is in the upper levels (above 200 hPa); for relative

humidity, the largest impact from the radiances came

from the middle levels (400–700 hPa); and for wind, the

largest impact was above 400 hPa. Figure 11 shows

the 6-h forecast normalized RMSE reduction against

radiosonde data at each vertical level (50-hPa interval)

from the all-radiance data-denial experiment compared

with the control run. It can be seen that for temperature,

the largest normalized impact (nearly 7%) is at 150hPa;

for relative humidity, the largest impact (more than 2%)

is at 600hPa; and for wind, the largest impact (more than

3%) is at 350hPa. For a few vertical levels, there is very

small forecast degradation. We also examined the all-

radiance data impact on precipitation forecasts. The re-

sults mostly are neutral (not shown).

Next, we examine the forecast lead-time evolution

of the all-radiance data impact from different atmo-

spheric layers (surface and boundary, 1000–800 hPa;

middle troposphere, 800–400 hPa; and from upper

troposphere to lower stratosphere, 400–100 hPa).

Figure 12 shows the normalized RMS error reduction

(against radiosonde data) for these three layers from

including the all-radiance data. It can be seen that for

temperature (Fig. 12, top left), the largest normalized

impact came from the 400–100-hPa layer with the

biggest normalized impact being more than 2% at

some forecast times. For relative humidity (Fig. 12, top

right), the largest impact systematically came from the

800–400-hPa layer with a normalized impact of more

than 1.5%. For wind (Fig. 12, bottom left), the biggest

impact came from the 400–100-hPa layer with the

biggest normalized impact of more than 2.5%. Also, as

shown in Fig. 10, radiance data are expected to have

the largest impact in the upper levels above 200 hPa for

temperature and wind since RAP conventional data

are usually sparse in this upper atmosphere.

To calibrate the radiance data impact in RAP, two

additional data-denial (for aircraft and radiosondes)

experiments were conducted. Figure 13 illustrates the

normalized RMSE reduction (100–1000-hPa mean)

from the all-radiance data-denial run (red), radiosonde

data-denial run (blue), and aircraft data-denial run

(green). Similar to results from James and Benjamin

(2017), aircraft data have the largest impact (14% for

temperature, more than 2% for relative humidity, and

8% for wind) among these three datasets. The impact

from the radiance data and radiosonde data is relatively

small compared with the impact from aircraft data, es-

pecially for temperature and wind. The radiance data

impact is comparable with (sometimes superior to) the

impact from the radiosonde data.

5. Summary and future work

The impact from real-time satellite radiance data

within a NOAA hourly updating regional model system

has been assessed and reported from 1-month retro-

spective runs. Adaptations were first made to better

FIG. 11. Normalized RMSE reduction [(EXPT 2 CNTL)/

CNTL] (%) for (top left) temperature, (top right) relative hu-

midity, and (bottom left) vector wind magnitude by 50-hPa layer

from the all-radiance data-denial run (red) 6-h forecasts against

rawinsonde observations. The retrospective period is from 1 to

31 May 2013. The error bar indicates the 61.96 standard error

from the mean impact, representing the 95% confidence thresh-

old for significance.
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assimilate radiance data in the RAP model, including

the use of real-time RARS direct-readout data, with the

application of a new enhanced bias correction scheme

within GSI, and appropriate channel selection. This

configuration was applied to the operational RAP sys-

tem, version 3, implemented at NCEP in August 2016.

A series of data-denial experiments was performed to

assess the forecast impact from radiance data, as well as

that from other conventional datasets (aircraft and ra-

winsonde). Short-range (1–18 h) forecast verification

against radiosonde observations showed an overall

positive impact with 95% significance when radiance

data were assimilated. For the full atmospheric layer

(1000–100-hPa layer), a consistent positive impact from

radiance assimilation with significance was found for

temperature, relative humidity and wind for all forecast

hours with the largest normalized impact of 1.6% for

temperature, 1.1% for relative humidity, and 1.6% for

wind. The RARS data provide improved real-time data

coverage for the RAP model, through lower latency, and

are able to provide a substantial portion of the total radi-

ance data impact for RAP with its tight data cutoff limits.

Verification results also showed that radiance data have

the largest impact for temperature in the 400–100-hPa

layer (up to 3% reduction in RMSE), for relative hu-

midity in the 800–400-hPa layer (more than 1.5%), and for

wind in the 400–100-hPa layer (more than 2.5%).

Aircraft and radiosonde data-denial experiments were

also conducted to evaluate the relative impact comparison

of other conventional datasets with satellite radiance data.

Radiosonde verification results showed that the radiance

data impact is much smaller than the aircraft data, but it is

often comparable with that from radiosonde data. One

possible reason for the small improvement from radiance

data in this study may be the absence of higher spectral

infrared data. AIRS data assimilation within RAP is

documented in Lin et al. (2017, manuscript submitted to

Wea. Forecasting), and we are currently testing the as-

similation of other high spectral infrared data [e.g., Cross-

Track Infrared Sounder (CrIS) and Infrared Atmospheric

Sounding Interferometer (IASI)] for the coming RAP

version 4 implementation.

Satellite radiance data have been shown to have small

but consistent positive impacts with significance for the

hourly updated RAPmodel system. Reduced data latency

now available through RARS direct readout was essential

for this result.We plan to incorporate new satellite datasets

[including the Joint Polar Satellite System (JPSS;Goldberg

et al. 2013) andGeostationary Operational Environmental

Satellite-R series (GOES-R, now GOES-16; Schmit et al.

2005, 2017)] through future direct readout and direct

broadcast [e.g., Direct Broadcast Network for Near Real-

Time Relay of Low Earth Orbit Satellite Data (DBNet)]

into RAP or other hourly updated models in the future.

FIG. 12. Normalized RMSE reduction [(EXPT 2 CNTL)/CNTL] (%) for (top left) temperature, (top right) relative humidity, and

(bottom left) vector wind magnitude for the 1000–800-hPa layer (red), the 800–400-hPa layer (blue), and the 400–100-hPa layer (green),

from the all-radiance data-denial run 1–18-h forecasts against rawinsonde observations. Statistics are computed over the RAP domain.

The retrospective period is from 1 to 31 May 2013. The error bar indicates the61.96 standard error from the mean impact, representing

the 95% confidence threshold for significance.
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